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Abstract

We have developed a template-based system for identifying and tracking vapour bubbles. The bubble images are acquired from a high-s;
digital camera. Each image sequence is recorded digitally for off-line image processing. The bubble detection process is organized in two phe
bubble identification and bubble tracking. In the first phase, a principal component analysis is applied for detecting bubbles roughly. After t
detection, some bubbles’ sub-images are used as templates in order to identify the bubble contours accurately. The prerequisite of using
system is that the bubbles are assumed to be of elliptic shape. In the second phase, the templates are used again for tracking bubbles. The mq
Newton—Raphson algorithm is applied to reduce the search time. The advantage of this method is that it can recognize bubbles that are recc
in a wide-range of experimental environments such as varied illumination, different bubble appearances and so on. After the bubble identificat
some parameters such as bubble size, position, moving speed, and the bubble nucleation sites are obtained. They are important for the resea
heat transfer.
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1. Introduction ground surface type has much more light reflection than the
sandblasted surface type has. See [3, Fig. 1].

The goal of our cooperative research group [1,2] is to ex- The goal of this research is to extract the bubbles’ geom-
plore the heat transfer relationship between given liquids anetry such as bubble size, bubble position, and bubble moving
heated tubes with different size, materials, surface structurgpeed. In order to reach this goal, every bubble in the image
and so on. The eventual goal is to discover the optimal heaequence should be recognized and identified. In one of our
transfer construction, which can save energy and prevent sonpeevious study [4], we used region-based snakes to identify the
possible critical situations. For this purpose, many experimentsubble contour. This method can be applied even if the bubble is
are designed and carried out. Some experimental processes &rarregular shape if an appropriate initial contour is given near
recorded with a high-speed digital video camera. These imagdbke detected target. This scheme maximizes the difference of
are saved digitally for off-line processing. Each sequence corthe inner and outer region defined by the contour. If we want to
tains five hundred images and each image has a resolution obtain an accurate contour, the selected feature has to be able to
512 by 512 pixels. The sampling rate is 1000 frames per seconitlentify the contour from a noisy environment (such as shadows
These experiments are made under different testing conditiorey light reflections). However, in our images, some bubbles’ ap-
such as liquid categories, tube diameters, surface material, syrearances are very similar to background both in gray-level and
face structure, pressure, temperature, and heat flux. These fagtexture. It is non-trivial to find features which can distinguish
tors have influences on image qualities. For example, an emetiie bubble contour precisely. This method works well when the

bubble appearances are quite different to background and with-
Comesoonding author out shadows and light reflections. Consequently, its application

E-mail Fzj\ddresZesnhen'g@im‘ormatik.uni-freiburg.de (D. Cheng), is very limited In,our research. )
burkhardt@informatik.uni-freiburg.de (H. Burkhardt). Another previous study [5] shows that we are able to iden-
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vironment. The limited experimental environment means theical problem [3]. In the geometric problem, it contains three
experimental conditions generating bubbles that have circulatifficulties:

shapes. Generally, this condition should have an intermediate

heat flux under high pressure. This is done with the help of &-1 The bubble shape depends on the surface structure, pres-
database. The database is a set of sub-images that are selected sure, and given heat flux.

manually. In this database, some sub-images are bubble ter®2 Two or more bubbles can be merged together to form a
plates and some are background templates. Each sub-image has larger bubble. In the coalescence process, the shape of
the same size dependent of the selected largest bubbles. Each bubbles is irregular.

bubble template contains a bubble in the center. The bubblgs-3 One bubble can be visually occluded by another one.

are at first roughly detected by a spectrum analysis method.

Then, the database is applied to locate the bubble center and thethe optical problem, it contains five difficulties:

bubble radius can be identified by the cross-correlation method

compared to the bubble template in the database. After the ide®-1 The reflection on the bubble surface depends on the posi-
tification, the bubbles are tracked and its nucleation sites can be  tion of the bubble.

then detected. 0-2 The reflection on the background depends on the bubble’s
In our recent work [3], we are able to track bubbles by giv- position. (See [3, Fig. 1a].)

ing a bubble contour manually. This is made by using the locaD-3 Large or flowing bubbles have a strong shadow problem.

contour information and a circular model. A cost function is de- This is because they have distinct distance to the tube

fined, in which not only the gray-level information is used, but (background). Moreover, the shadow position depends on

also some gradient information and gradient direction. In addi-  the bubble position.

tion, the occlusion problem is solved. Refs. [3,5] are based 0®-4 Some bubbles are in ill-illuminated areas.

an assumption that the bubble has a circular shape. Howeveéd-5 Some bubbles are out of focus. This might be due to two

many bubbles do not follow this assumption such as large bub-  possibilities:

bles or bubbles that are generated by lower pressure and higher (1) Itis a speedy flowing bubble.

heat flux. Some bubbles are of elliptic or irregular shape, es-  (2) Itis notin the focus depth.

pecially when two or three bubbles are merging together. The

underlying scheme is developed for observing bubbles geneGase G-1, as we have mentioned before, the bubbles in inter-

ated from nucleation sites. mediate heat flux and high pressure are mostly circular. The
A similar study for tracking bubbles is reported in [6]. The bubbles in high heat flux and low pressure are elliptic or even

author developed a PT\Pérticle Tracking Velocimetdysys-  irregular. The difficulties of G-2 and G-3 are sometimes non-

tem based on image processing techniques. The bubble flow tigvial to distinguish. The only information is time. If bubble A

limited to a column and a back light source with a highly diver-is visually occluded by bubble B and if their moving speeds are

gent light that is applied. With this construction, some bubbledlifferent, then after several frames, bubble A can be observed

can be focused by adjusting the depth. Only bubbles in focuagain. However, this is under the assumption that both bubbles

appear in the images and the other bubbles are blurred. Theaee in focus. Normally, a flowing bubble is out of focus and this

blurred bubbles can be rejected by a subsequent image segil increase the difficulty of recognition. In many cases, we

mentation technique. The segmentation technique used in thabserve that two flowing bubbles are out of focus and one is

study is a thresholding process combined with some edge deccluded by another one. In our previous study [3], we solved

tection method and morphology operations. It is based on ththe occlusion problem but under the assumption that the target

fact that: bubble is of circular shape.

The difficulties O-1, O-2, and O-3 hint that the single cross-
(1) The bubble images have homogeneous background. correlation method cannot be applied. All of the above possi-
(2) The bubble appearance has less difference. bilities make bubbles quite different in geometry and in appear-

ance and non-trivial to be identified. This is due to the fact that

This kind of images is relatively easy to be processed irevery image sequence has different combinations of difficul-
order to identify the bubbles. In the case of our images, théies.
background is normally the surface of the heated tube. There- Unlike our works in [3,5], we expend the model from cir-
fore, it is not homogeneous because it depends on the surfacalar to elliptic in order to better identify more bubbles un-
structure. The simple thresholding technique cannot be applieder different experimental conditions. In addition, the bubble
to segment bubbles from the background. recognition and feature selection in [5] are modified in this pa-

Another study using PTV to track particles in water is re-per which can recognize bubbles in a better performance.
ported in [7]. In the images, the background is dark and homo- In Section 2, the system architecture of the whole process is
geneous, the particles are white so that a thresholding techniqirroduced. The algorithm is divided into three major parts:
and region growing process can be used to segment the particles
from the background. (1) Bubble identification (Section 2.1);

The problems encountered in our research can be divide(2) Bubble tracking (Section 2.2);
into two major groups, i.e. the geometric problem and the op{3) Manual correction (Section 2.3).
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Afterwards, the results are given and we end with a conclubles in a backward direction. In the following sections, the
sion. details of the system will be outlined.

2. System architecture 2.1. Bubble identification

The experimental facility is shown in [2, Fig. 4.1]. The in-  For the intention to deal with the first four optical problems,
vestigated heating tube is fixed in the center of the containeft s intuitive that making a system to learn the target (bubbles)
Through a window one can observe and record the experimefs necessary [10]. The reason is obvious: Since the bubble ap-
tal process. Some recorded images with different experimentglearances vary according to the experimental conditions and
conditions are shown in [2, Fig. 5.4] or in [8, Fig. 1]. parameters, it is reasonable to have template information of the

Normally, each tube is recorded at least by three image seybble appearances from the processed images.
quences under the same experimental condition. They are at
different window positions shown in Fig. 1. Generally, the up-Feature extraction. A commonly used feature extraction
per window contains not only the bubbles generating from thenethod is the Karhunen—Loéve transformation (or Principal
upper surface of the tube but also from the middle and |0W€Component Analysis) [11,12]. In this study, we use a data-
part. Those bubbles are normally flowing and out of focuspase to collect some manually selected sub-images as patterns.
Therefore, they might interfere the observed target bubbles. Thepege patterns have the same size ok4D pixels. They in-
bubbles in the middle window are usually in focus, this is due tqyde bubble and background patterns. The user should choose
the fact that the distance between the tube surface and the vidgg many patterns as possible to cover varied bubble or back-
camera do not change in a wide range and most of the targgfound appearances, and as less as possible to decrease com:
bubbles are in the same depth. On the contrary, the bubbles §tation time and inconvenience. How many patterns should be
the upper or lower windows are partially not in focus. selected is a black art. Normally, we select patterns from the

Each image sequence contains 500 images and they afigs; 50 images. The number of patterns should be at least 20
recorded in 0.5 sec. A GUIQraphicUserInterface) is devel-  tor each group: bubble and background.

oped in a Matlab [9] platform for user to operate the bubble | & B; denote theth bubble pattern anBG; denote thejth
recognition system. This system is generally divided into ﬁveoackground patterrB;, BG, e R2. The expectation of every

parts: pattern is zero, for both bubble or background patterns. The
kth column inB; is denoted byB;; € R, B, is a vector
and 1< k < 40. Assuming there ar& bubble patterns and
M background patterns, the composition of &h column
from every pattern is denoted g pG.k, WhereXp p.x =
{B1k,B2k,...,BNk,BG1k,BGok,...,BGyi} € R? is a

40 x (N 4+ M) matrix. Its correlation matrix iSRx ; =

_ _ X5 Gk X} pc .- Thereafter, the eigenvectors of the correla-
There are two kinds of databases: one is for bupple recognfion matrix can be obtained and denotedas. v2 ¢, v3s, .. ..

tion and another one is for bubble contour identification. 'nAssuming the largest four eigenvalues aié“ )»2’,k, )»é,,k and

this paper, the phrase ‘recognition’ means that some target '/l§4k, and their corresponding eigenvectors erg, va ;. v

acknowledged on an image. However, the boundary of the tay,q, . Thys, the first eigenimage can be defined as a compo-
get might not be accurately acknowledged. Nevertheless, thﬁtion of the eigenvectors:

phrase ‘identification’ means that the target is accurately ac-
knowledged. Ki={v11,v12,v13,...,V140} € R2 Q)

In th_e bubble_recognltlon, bub_bles n the images are roughl)&vherevl « IS the first eigenvector of the correlation matrix com-
recognized. It gives the system information where the bubble osed b&/ the:th column vectors ifB;. BG: | 1<i < N, 1<
is J X Ex IV, X

Sreir']rgﬁ[jebabflt:; g]c?:LSJ?/aStteemo?sti)t?ocrwesngr?;e:o%?(:l:]resse areastoid ]né M}. Then the second, third and fourth eigenimages can be
fy P : obtained in the same way. They are denoteiKbyK 3 andK 4,

In the bubble tracking, t_he system uses information not Onlyrespectively. Afterwards, a scalar madekoy can be defined:
from the results of recognition but also from the results of the

bubble identification in the last image. Notably, we track bub-D; ; 1 = KIkBi,k, 1<k<40 (2)

U I ) |

(a) (b) (c)

Database setup.

Bubble recognition.

Bubble contour identification.
Bubble tracking.

Manual correction.

Fig. 1. The positions of observing windows (a) The upper window. (b) The middle window. (c) The lower window.
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whereK 1 ; = v1 . Define a vectoD; 1: the angle into consideration since it increases the computation
time and only few bubbles are rotated. Every bubble template is
—D. _ T
Di1={Dix1lk=12...,40} ) normalized to have the same size, i.e 41 pixels, through a
and the feature vector ¢th pattern is then defined by: linear image resize. Some information are saved in the database
T T T T T _ such as the bubble’s position, bubble’s two axes lengths, bub-
Di = {Di,lDi,ZDi,3Di,4} , 1I<iSN (4)  ple appearance (gray-level) and so on. The bubble’s position

whereD; 2, D; 3 andD; 4 is made byK, K3 andK 4, respec- and size are taken into consideration when the templates are

tively. Let us redefine the feature vector of ftiebubble pattern ~ chosen for matching in tracking and identification. The num-
and the jth background pattern @85 and Dgg,;, respec- ber of selecting templates depends on the image itself. Some

tively. Therefore, the feature space is composed by the featufB12ge sequences have less bubbles, therefore, the bubble ap-
vectorsDp; andD¢.j where 1<i < N and 1< j < M. pearance has less variance. In this situation, we do not need to

select too many bubbles as templates. However, in complicated
Bubble recognition. In this study, we use a linear classifica- situations, some bubbles are out of focus. There are too many

tion to segment bubbles from the background. After extractin%possibilities of bubble appearance and therefore it is necessary
the bubble and background features, the center of each groups have more bubble templates to cover as many as possible ap-
calculated. Let the centers of bubble and background featurd¥arances.

be denoted byCp and Cpg, respectively. Each image to be

processed is divided into several overlapping sub-images of tHdubble contour identification. In this study, the template
same size. The overlapping percentage is 66.7%. Iftthsub- matching is applied to identify the bubble accurate contour.
image is defined by§;, then a scalar can be defined similarly to Since there are some initializations of bubbles’ positions, the

Eq. (2) system can focus on their local regions to search the bubbles.
T Firstly, five templates are selected from the database. The selec-
Eir1=K; Sk 1<k<40 ®)  tion strategy is the five templates that have the nearest distances

The feature vector of thih sub-image is obtained and denotedto the current bubble’s initialization position. This is due to
asE;. Then, the sub-image belongs to bubble group if it satis—th‘? fact that there is no additional information except the po-
fies: |E; — Cgl| < |[E; — Cpgl. Via this way, most sub-images sition. We choose the nearest templ_ates pgcause the bubble
that contain bubble(s) are recognized. Since there is a 66.7@PPearance is strongly dependent on its position. Generally, the
overlapping, there might be several sub-images indicating thBUbble appearance’s varianceyiirection is larger than in the
same bubble. In order to decrease the number of coincidencesdirection. _ _

each sub-image is allowed to be compared with the local nearby ASsuming the template image is denoted kyx), where
sub-image to get the best estimation. Bgtc,, c,) denote the X =[x yI". The bubble to be identified is denoted by a mo-
sub-image at center poirt,, c,), and E;(c,,¢,) its corre-  tion model {m(X,T), where T is a parameter vectol =
sponding feature vector. Then, the best estimation is assumégr dy-@. b1 . dr and d, are the translations in- and y-

to be: direction. « and b are the axis lengths as defined before.
Thus, the parameter vector changes until the error function
(¢, cy) = argi , min N (|Ei(c. c)) — CBD} (6)  J(e(T)) defined by the image differeneaT) betweenlx(x)
tgiiftg and I,,(x, T) reaches a minimum. The error function is cho-

. o o sen to be the expectation value of the squared image differ-
where Ax and Ay depict the shift inx- and y-direction. Here  gpce

we useAx = 13 andAy = 13. Based on this scheme, most _ 1 1 _

bubbles can be recognized. However, the smaller bubbles cag{e(T)} = _E{ez} =E{(In(x,T) — 12(x))2} (7)

not be recognized. This is due to the fact that the small bubbles 2 2

have less information than background in the sub-images. Arwhich is assumed to be twice differentiable. A direct solution

other problem is that large bubbles can be recognized by sonfer the minimization of the error function is given by a global

sub-images. These two problems can be partially solved in Segearch for the optimal parameter vec®r= T resulting in

tion 2.2. a four-dimensional cross-correlation calculation which causes
tremendous numerical complexity [13].

Database setup. After the process depicted in Section 2.1  Burkhardt et al. [13-16] propose a modified Newton—

bubble recognition, most of the bubbles’ positions are roughlyRaphson method in searching the minimum of an error value.

recognized. Nevertheless, the accurate positions and contouF§€ iterative structure is given by the equation

are not yet known. In order to accurately identify the positions= = 1 &

and contour, we need another database. In this database, or-1rl<frl =Te—H"-5(Tw) ®

bubble templates are saved. The user selects the bubble by giwhere the gradient vectgy(-) and Hessian matri¥d are the

ing four points around the bubble: left, right, top and bottom offirst and second derivative of the error functidie(T)) with

the bubble’s contour. Since the bubble shape is assumed to bespect to the parameter vecioe T.In [16], the Hessian ma-

elliptic, there are four parameters in this model, i.e. the centetrix is calculated only once since the template is very similar

position(c,, cy), and two axes lengthsandb. We do not take to the target candidate. This modification reduces the tremen-
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dous computational complexity. The gradient vector is derlveq_| To) =

directly from the error function

~  3J{eT
oFp = Db
T=T;
01, (X, T)}
L%, T) — L(0) 22 9
{( L S Y ©

And the Hessian matrix is derived from the gradient vector

927 {e(T)}
oToT |77,

:E{alm(x T) /8 (i,?))T
3T 3T

321, (x, T) }

H(Ty) =

+ (In (%, T) = I2(x)) (10)

— =

oToT

-7,

For the intention to reduce the computational complexity,

Burkhardt et al. [15,16] make a coordinate transform:

=hx.T) (11)
Therefore, the error function can be rewritten as
He@Y} = ZE{(1.(X) — X, T)?) (12)
And the gradient vector can be rewritten as
~ =~ AlL(X, T
9(Tk) = E{(Im(x’) — (X, T)) <_#)} o
oT T_T,
X
= {(zm x, T) — () 012(X) } R (13)
T=T4

The 22T term in Eq. (9) can be replaced by22% in

dL(X) (%) \"
{ 3T < 3T )

3°I2(X)
8T8T }

By this, the computational complexity is tremendously reduced.
In [16], based on the assumption that the difference between
the template and the target candidate is very limited, the second
term in the right-hand side in Eq. (17) can be omitted. However,
owing to the fact that there might be large differences between
the templates and target bubbles, we cannot omit this term in

— (In(x, T -1 2(X))

(17)

=7,

this study.
The second order derivative in Eq. (17) can then be derived
Dy T2y Iy —x1py —yloxy
a2 ab a2 ab
Ioyy —x 1oy Ipy—ylIpy,y
P’hLx) | ~ a ab N (18)
—— = 2 Do,
oT;0T; _ x 1&22 x I xyasy
- _ _ Y2loy =y lay
b2
wherelp, = 2% [, 3812()‘) and so on. Notably, Eq. (18)

is a symmetrlc matnx Although the Hessian matrix has to be
updated in every iteration sindg, (x, T)is changed, however,

a tremendous computation time is reduced via the coordinate
transformation.

2.2. Bubble tracking

Bubble tracking process is a combination of template selec-
tion, bubble contour identification, and coincidental bubble re-
moval. As we have mentioned before, the template selection in
the bubble contour identification is important because bubbles’
appearances depend on the positions of bubbles. In the tracking
phase, the bubbles in the last image are identified. Thus, addi-
tional information are obtained such as bubble’s two axis length
a andb. A cost function is defined in order to get five templates

Eq. (133 Sincel,>(x) is a template image, it can be computed from the database to be candidate templates for tracking a bub-

once in the beginning. The derivative can be rewritten as

()= (5 (5) (%)
oT Jli_s, dx X aT ) |5_7

T=Ty

(14)

ble.
fi=cidjx+cadjy+cadja+cadjp (19)

wherecy ~ ¢4 are constantsd; , andd; , are thex- and y-
coordinate distances between the bubble candidate andthe

with (x’, y') the coordinate transform of an ellipse without ro- template in the database, respectively, andd; ; are the ab-

tation:
x’ ax d1>
= 15
(y/> <bY) (dz (15)
Therefore, the derivative can be derived as
LX) 8 1
dady ax a
d12(X) alr(X) 1
aLx) | "2 B T
aT 3I>(X) 3509 x
a ax a
dlx( (X)) y
szx_) dy b

solute difference of axis length and b between the bubble
candidate and thgth template in the database, respectively.
Five templates in the database that have the smallest cost val-
ues are selected. Each template candidate is tested by giving the
same initialization vectofdy; d»; a; b;1".d1; =d1is1

is x-translation inherited from the identified bubble in the last
image, i.e.(i + Dth image.d2; = d2,i11 — c\/a;;1 is the y-
translation modified from the last image, where 8 anda; 1

is the axis length in the last image. Since the backwards tracking
is applied, the bubble goes downwards and thus we use nega-
tive sign in the position estimation. The cost value in Eq. (7) is
calculated after convergence while it reaches a local minimum.

Similarly, based on the coordinate transformation listed inThe least one is chosen and its corresponding template is used

Eqg. (11), the Hessian matrix in Eq. (10) can be rewritten as

to track the bubble.
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Once the template is determined, a random process based The above paragraph describes how to track a bubble from
on a Gaussian distribution in estimating the translation and axi§ + 1)th image to currentth image. However, the bubble
length is applied. The probability in estimating axis lengtlis ~ recognition in Section 2.1 has to be applied to every image. Af-

given by terwards, The bubble contour identification is applied on every
—(cat;—a41)? recognized bubble before tracking. Therefore, some bubbles are
pla;) = N e 27 (20) identified that might be tracked in the currétitimage. If there
o

) o ) ) are coincidental bubbles, only one bubble remains. Our strategy
with ¢, = 1. The estimation of axis length; is the same g choosing the largest bubble to be remained. This is based on

as shown in Eq. (20) except thaj is replaced byc, with  he ohservation that some inner part of a large bubble is similar
¢p = 1.25. The axis lengtly; andb; can be decreased or in- to a bubble in vision.

creased since the bubble might change its shape. The estimation
of x-translation is given by

dii =d1it1+ ceretaizn (21)

wheret is the index number, =1, 2,...,40.r, is a random In order to make sure that every bubble is detected and iden-
number that satisfies the Gaussian distribution with zero meatified correctly and accurately in five-hundred images of a se-
ando =1, ¢, = 0.0156. The estimation of-translation is quence, the manual correction is necessary. This is based on

2.3. Manual correction

given by the fact that this system cannot assure every image sequence of
cyajs1bis1t different image quality in a constant quality. The identification
dzi=dzi+1— N (22)  ratio strongly depends on the image quality. If the illumination

where ¢, = 0.0313 andN = 40. N is the number of total condition is bad or if many bubbles are out of focus, then the

estimations. These estimations are given as initializations ifgtic Will decrease apparently. A friendly GUI is designed for
tracking bubbles. This mechanism avoids being trapped into the user to delgte the false-positive bubble and to add/identify
local minimum and tries to find the global minimum. The fi- the false-negative bubble manually.

nal convergence results are saved and their corresponding cost

values are compared. The least one is chosen and its paran-Results

ter set[d1 do a b]' indicates the geometric parameters

of the bubble to be tracked. If the minimal cost value satisfies Fig. 2 shows examples of bubble and background patterns
% < 2, then it is assumed to be correctly tracked. Otherfrom the database. There are totally twenty bubble patterns and

wise, it might fail due to the following reasons: twenty background patterns. Each pattern is of the same size
of 40 x 40. The eigenimages are then calculated and shown in
e The bubble is occluded by some other bubble. Fig. 3. In Fig. 4(a), the feature space of the bubble patterns is
e The bubble might be near the image boundary resulting inllustrated. Each feature vector is of the size 160 and there
a higher cost value. are totally twenty features of each category. In Fig. 4(b), the

e The template might be not suitable for this bubble or therdeature space of the background is shown and it is easily to be
are no matched template in the database. This might be dumticed that there are apparent differences between these two
to that this bubble is out of focus. categories.

(e) (f) (8) (h)

Fig. 2. Bubble and background patterns: From (a) to (d) are bubble patterns. The rest are background patterns.
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(a) (b) () ()

Fig. 3. Eigen images. From (a) to (d) is the first, second, third, and fourth eigenimage.

0 o o o
Vektor Nummer Vektor Nummer Vektor Raum

(c) (d)

Fig. 6. Five template candidates.
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Each image in an image sequence has to be processed {Bubble contour identification) to obtain the minima of the er-
the bubble recognition. The result of the first image is shown imor function. Only the minimum error value of each template
Fig. 5. Fig. 5(a) is the result of bubble recognition and (b) is thes chosen and they are shown in Fig. 7. The criterion to select
final result after coincidence detection. Most bubbles are recoghe best template is according to the error values. A smaller er-
nized and marked by squares. Each square is of the same sizg value indicates a better match between the template and the
of the eigenimage. Large bubbles are recognized by more thajsubble to be identified. In this example, the fifth template candi-
one square. This is reasonable because the square is not lagge is therefore chosen. From the view point of vision, it is the
enough to contain the whole bubble. By the way, some squargfiost likely template to the target bubble. After the template is
do not recognize the accurate bubble positions. This problemetermined, the modified Newton—Raphson method is applied
can be solved in the bubble contour identification procedure. again to identify the bubble by giving more initial parameter

In the bubble contour identification, every square has to bgets, In order to demonstration, an initial parameter set is given
processed via the template matching based on the modifieg; _ |7, 4, « b7 where(ds, d») is the center coordinate
Newton—Raphson method. An .exa'mple is. d_emor_1§trated h'oyyf the square and = 1, = 1. Fig. 8 shows how the bubble
the bubble marked by an arrow in Fig. 5(b) is identified. In thisig ijentified in iterations. From (@) to (j) we see the resulting

example, we have forty-eight templates in the database. Five gf, g6 in the square. Once the bubble locates in the center of
them, shown in Fig. 6, are automatically selected to test and thl‘f“ue square and its boundary locate the same position to the tem-

pes;[honfg IS chc;ggntto ?he the temp,:,atﬁ The tiSt/_én;;ZOd IS g'ﬁlate, then the matching is done. Fig. 9 illustrates the error value
Lﬂg me d'.\fl.e g?\ln vlvtanesR es argen:mﬂ:a dpgramrgbe; ins utgen 5 f each iteration. From the plot, one can easily notice that the
€ modihed Newton—Raphson method described in section 2, onvergence takes place at iteration number six. The following

iterations assure that the template matching is already in a sta-
ble state. This example demonstrates how efficient the modified
Newton—Raphson method is.

Fig. 10 is the tracking result of the firstimage. The boundary
of each bubble is represented by four points. This representation
is better than a fully ellipse contour because the later one will
interfere the observation of the boundary. After five-hundred
images are processed, manual correction follows. Therefore,
the correct identification ratios can be calculated for each image
and they are illustrated in Fig. 11. The mean correct identifica-
tion ratio of this sequence is 55%.
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200 4, Discussion
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o . . . . , , , This study can be separated into two parts:

1 1.5 2 25 3 3.5 4 4.5 5

Fig. 7. Error criterion plot. The abscissa indicates the template number and thel) the object recognition and
ordinate indicates the error criterion value. (2) multi non-rigid object tracking via static camera.

(f) (8) (h) (i) 8)

Fig. 8. Modified Newton—Raphson method in identifying a bubble.
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Some similar works such as kernel-based object tracking [17ditional database to recognize the bubbles. The number of the
and trust-region method [18,19] have still background. The inipatterns in the database are not less than twenty for each group.
tial contour is given manually in [17] and automatically in [19]. In the future, a non-linear classification method should be ap-
In [19], the object can be detected via a background subtractioplied to separate the bubbles from background.

process. The background is obtained through a training process In the manual correction, we have a very strict requirement.
in which there are few or no objects in the image scene. HowSome bubbles’ contours identified automatically are only few
ever, in our applications, some sequences have many flowingjxels difference to the manual corrected contours. Those con-
bubbles in the image scene so that it is non-trivial to obtain dours are removed and corrected manually. This is due to the
reliable background image. That is the reason why we need aeffect of the shadows and reflections since we have only forty-

Error criterion value
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Fig. 9. The error value during the iterations.
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eight templates that cannot convey all of the situations espe-
cially for those bubbles out of focus. However, another reason
of low ratio of identification is the feature and cost function. In
this study, we use the original gray-level as feature and cross-
correlation as similarity measure. It is known that the correla-
tion is sensitive to illumination change. That is why we force
the expectation of,, (x, ?) and/(x) to be zero before the sim-
ilarity measure.

5. Conclusion

This paper presents a work based on templates to identify
and track non-rigid objects in images sequences. In the first
phase, the bubbles are roughly recognized via classification
in the feature space after a Karhunen-Loéve transform of the
original images. In the second phase, the modified Newton—
Raphson method is applied to identify the accurate contours
via a correlation method. This study provides a tool to extract
the bubbles’ positions, bubbles’ size, moving speed, nucleation

Framel.bmp

5004
T
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0 50 100 150 200 250 300 350 400 450 500
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Fig. 10. The tracking result.
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